Optimizer
SINGA hỗ trợ đa dạng các thuật toán tối ưu (optimizers) phổ biến bao gồm
stochastic gradient descent với momentum, Adam, RMSProp, và AdaGrad, etc. Với
mỗi thuật toán tối ưu, SINGA hỗ trợ để sử dụng decay schedular để lên kế hoạch
learning rate áp dụng trong các epochs khác nhau. Các mỗi thuật toán tối ưu và
decay schedulers có trong singa/opt.py
.
Tạo thuật toán tối ưu
- SGD với momentum
# xác định hyperparameter learning rate
lr = 0.001
# xác định hyperparameter momentum
momentum = 0.9
# xác định hyperparameter weight decay
weight_decay = 0.0001
from singa import opt
sgd = opt.SGD(lr=lr, momentum=momentum, weight_decay=weight_decay)
- RMSProp
# xác định hyperparameter learning rate
lr = 0.001
# xác định hyperparameter rho
rho = 0.9
# xác định hyperparameter epsilon
epsilon = 1e-8
# xác định hyperparameter weight decay
weight_decay = 0.0001
from singa import opt
sgd = opt.RMSProp(lr=lr, rho=rho, epsilon=epsilon, weight_decay=weight_decay)
- AdaGrad
# xác định hyperparameter learning rate
lr = 0.001
# xác định hyperparameter epsilon
epsilon = 1e-8
# xác định hyperparameter weight decay
weight_decay = 0.0001
from singa import opt
sgd = opt.AdaGrad(lr=lr, epsilon=epsilon, weight_decay=weight_decay)
- Adam
# xác định hyperparameter learning rate
lr = 0.001
# xác định hyperparameter beta 1
beta_1= 0.9
# xác định hyperparameter beta 2
beta_1= 0.999
# xác định hyperparameter epsilon
epsilon = 1e-8
# xác định hyperparameter weight decay
weight_decay = 0.0001
from singa import opt
sgd = opt.Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, weight_decay=weight_decay)
Tạo Decay Scheduler
from singa import opt
# xác định learning rate ban đầu
lr_init = 0.001
# xác định rate của decay trong decay scheduler
decay_rate = 0.95
# xác định learning rate schedule có ở dạng staircase shape
staircase=True
# xác định bước decay của decay scheduler (trong ví dụ này lr giảm sau mỗi 2 bước)
decay_steps = 2
# tạo decay scheduler, schedule của lr trở thành lr_init * (decay_rate ^ (step // decay_steps) )
lr = opt.ExponentialDecay(0.1, 2, 0.5, True)
# sử dụng lr để tạo một thuật toán tối ưu
sgd = opt.SGD(lr=lr, momentum=0.9, weight_decay=0.0001)
Sử dụng thuật toán tối ưu trong Model API
Khi tạo mô hình model, cần đính kèm thuật toán tối ưu vào model.
# tạo CNN sử dụng Model API
model = CNN()
# khởi tạo thuật toán tối ưu và đính vào model
sgd = opt.SGD(lr=0.005, momentum=0.9, weight_decay=1e-5)
model.set_optimizer(sgd)
Sau đó, khi gọi hàm model, chạy phương pháp train_one_batch
để sử dụng thuật
toán tối ưu.
Do vậy, một ví dụ cho lặp lại loop để tối ưu hoá model là:
for b in range(num_train_batch):
# tạo mini-batch tiếp theo
x, y = ...
# Copy dữ liệu vào tensors đầu vào
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
# Train với một batch
out, loss = model(tx, ty)