Tensor¶
Each Tensor instance is a multidimensional array allocated on a specific Device instance. Tensor instances store variables and provide linear algebra operations over different types of hardware devices without user awareness. Note that users need to make sure the tensor operands are allocated on the same device except copy functions.
Tensor implementation¶
SINGA has three different sets of implmentations of Tensor functions, one for each type of Device.
‘tensor_math_cpp.h’ implements operations using Cpp (with CBLAS) for CppGPU devices.
‘tensor_math_cuda.h’ implements operations using Cuda (with cuBLAS) for CudaGPU devices.
‘tensor_math_opencl.h’ implements operations using OpenCL for OpenclGPU devices.
Python API¶
Example usage:
import numpy as np
from singa import tensor
from singa import device
# create a tensor with shape (2,3), default CppCPU device and float32
x = tensor.Tensor((2, 3))
x.set_value(0.4)
# create a tensor from a numpy array
npy = np.zeros((3, 3), dtype=np.float32)
y = tensor.from_numpy(npy)
y.uniform(1, 1) # sample values from the uniform distribution
z = tensor.mult(x, y) # gemm > z of shape (2, 3)
x += z # elementwise addition
dev = device.get_default_device()
x.to_device(dev) # move the data to a gpu device
r = tensor.relu(x)
s = tensor.to_numpy(r) # tensor > numpy array
There are two sets of tensor functions,
 Tensor member functions
which would change the internal state of the Tensor instance.
 Tensor module functions
which accept Tensor instances as arguments and return Tensor instances.
Every Tesor instance must be initialized before reading data from it.

class
singa.tensor.
AddBias
(axis=0)¶ Add Bias to each row / column of the Tensor, depending on the parameter axis.

backward
(dy)¶  Parameters
dy (CTensor) – data for the dL / dy, L is the loss.
 Returns
a tuple for (db, dx), db is data for dL / db, dx is data for dL / dx.

forward
(x, b)¶  Parameters
x – matrix.
b – bias to be added.
 Returns
the result Tensor


class
singa.tensor.
CrossEntropy
¶ Calculte CrossEntropy loss for a batch of training data.

backward
(dy=1.0)¶  Parameters
dy (float or CTensor) – scalar, accumulate gradient from outside of current network, usually
to 1.0 (equal) –
 Returns
data for the dL /dx, L is the loss, x is the output of current network. note that this is true for dy = 1.0
 Return type
dx (CTensor)

forward
(x, t)¶  Parameters
x (CTensor) – 1d or 2d tensor, the prediction data(output) of current network.
t (CTensor) – 1d or 2d tensor, the target data for training.
 Returns
scalar.
 Return type
loss (CTensor)


class
singa.tensor.
Dummy
(tensor, name=None)¶ Dummy operation whice serves as a placehoder for autograd
 Parameters
name (string) – set it for debug

class
singa.tensor.
Matmul
¶ For matrix multiplication

backward
(dy)¶  Parameters
dy (CTensor) – data for the dL / dy, L is the loss
 Returns
a tuple for (dx, dw)

forward
(x, w)¶ Do forward propgation.
Store the x(or w) if w(or x) requires gradient.
 Parameters
x (CTensor) – matrix
w (CTensor) – matrix
 Returns
a CTensor for the result


class
singa.tensor.
Operation
¶ An operation includes the forward and backward function of tensor calculation.
To add a specific operation Xxxx, subclass Operation and implement forward() and backward(). Then implement a function xxxx which creates a Xxxx instance and calls __call__ to do forward. The autograd engine is able to do backward propagation by calling the backward() of Xxxx automatically. Notice that the tensors are CTensor. NOT Python Tensor. The arguments of forward() and backward() should only include CTensor args;

backward
(*dys)¶ Backward propagation.
 Parameters
dys – input args consisting of only CTensors.
 Returns
CTensor instance(s)

forward
(*xs)¶ Forward propagation.
 Parameters
xs – input args consisting of only CTensors.
 Returns
CTensor instance(s)


class
singa.tensor.
ReLU
¶ 
backward
(dy)¶  Parameters
dy (CTensor) – dL / dy
 Returns
dL / dx = dy if x >= 0; otherwise 0;
 Return type
dx(CTensor)

forward
(x)¶  Parameters
x (CTensor) – input tensor
 Returns
a new CTensor whose element y = x if x >= 0; otherwise 0;


class
singa.tensor.
SoftMax
(axis=0)¶ Apply SoftMax for each row of the Tensor or each column of the Tensor according to the parameter axis.

backward
(dy)¶  Parameters
dy (CTensor) – data for the dL / dy, L is the loss
 Returns
data for the dL / dx, L is the loss, x is the input of current Opertion
 Return type
dx (Ctensor)

forward
(x)¶  Parameters
x (data) – the input 1d or 2d tensor
 Returns
the result Tensor


class
singa.tensor.
Tensor
(shape=(), device=None, dtype=0, data=None, requires_grad=True, stores_grad=False, creator=None)¶ Python Tensor, which wraps a swig converted Tensor from CPP Tensor.
 Parameters
shape (tuple<int>) – a tuple of integers for the tensor shape. If shape is not specified, the created tensor is called a dummy tensor.
device – a swig device. If None, the default host device is used.
dtype – data type. currently, most operations only accept float32.
data – a numpy array or swig tensor.
requires_grad – boolean indicator for computing the gradient.
stores_grad – boolean indicator for storing and returning the gradient. Some intermediate tensors’ gradient can be released during the backward propagation. A tensor may require grad but not store grad; But if a tensor stores grad then it must require grad.

T
()¶ shallow copy, negate the transpose field.
 Returns
a new Tensor which shares the underlying data memory (shallow copy) but is marked as a transposed version of this tensor.

add_column
(v)¶ Add a tensor to each column of this tensor.
 Parameters
v (Tensor) – a Tensor to be added as a column to this tensor.

add_row
(v)¶ Add a tensor to each row of this tensor.
 Parameters
v (Tensor) – a Tensor to be added as a row to this tensor.

bernoulli
(p)¶ Sample 0/1 for each element according to the given probability.
 Parameters
p (float) – with probability p, each element is sample to 1.

clone
()¶  Returns
a new Tensor which does deep copy of this tensor

copy
()¶ shallow copy calls copy constructor of singa::Tensor

copy_from_numpy
(np_array, offset=0)¶ Copy the data from the numpy array.
 Parameters
np_array – source numpy array
offset (int) – destination offset

deepcopy
()¶ Same as clone().
 Returns
a new Tensor

div_column
(v)¶ Divide each column of this tensor by v.
 Parameters
v (Tensor) – 1d tensor of the same length the column of self.

div_row
(v)¶ Divide each row of this tensor by v.
 Parameters
v (Tensor) – 1d tensor of the same length the row of self.

gaussian
(mean, std)¶ Generate a value for each element following a Gaussian distribution.
 Parameters
mean (float) – mean of the distribution
std (float) – standard variance of the distribution

is_empty
()¶  Returns
True if the tensor is empty according to its shape

is_transpose
()¶  Returns
True if the internal data is transposed; otherwise False.

l1
()¶  Returns
the L1 norm.

l2
()¶  Returns
the L2 norm.

memsize
()¶  Returns
the number of Bytes allocated for this tensor.

mult_column
(v)¶ Multiply each column of this tensor by v elementwisely.
 Parameters
v (Tensor) – 1d tensor of the same length the column of self.

mult_row
(v)¶ Multiply each row of this tensor by v elementwisely.
 Parameters
v (Tensor) – 1d tensor of the same length the row of self.

ndim
()¶  Returns
the number of dimensions of the tensor.

reshape
(shape)¶ Change the tensor shape.
 Parameters
shape (list<int>) – new shape, which should have the same volumn as the original shape.

set_value
(x)¶ Set all elements of the tensor to be the give value.
 Parameters
x (float) –

size
()¶  Returns
the number of elements of the tensor.

to_device
(device)¶ Move the tensor data onto a given device.
 Parameters
device – a swig Device converted from CudaGPU or CppCPU or OpenclGPU

to_host
()¶ Move the tensor data onto the default host CppCPU device.

uniform
(low, high)¶ Generate a value for each element following a uniform distribution.
 Parameters
low (float) – the lower bound
high (float) – the hight bound

singa.tensor.
abs
(t)¶  Parameters
t (Tensor) – input Tensor
 Returns
a new Tensor whose element y = abs(x), x is an element of t

singa.tensor.
add
(lhs, rhs, ret=None)¶ Elementiwise addition.

singa.tensor.
add_column
(alpha, v, beta, M)¶ Add v to each column of M.
Denote each column of M as m, m = alpha * v + beta * m

singa.tensor.
add_row
(alpha, v, beta, M)¶ Add v to each row of M.
Denote each row of M as m, m = alpha * v + beta * m

singa.tensor.
average
(t, axis=None)¶  Parameters
t (Tensor) – input Tensor
axis (int, optional) – if None, average all elements; otherwise average along the given dimension. 0 for averaging each column; 1 for averaging each row.
 Returns
a float value if axis is None; otherwise, a new Tensor for the result.

singa.tensor.
axpy
(alpha, x, y)¶ Elementwise operation for y += alpha * x.

singa.tensor.
bernoulli
(p, t)¶ Generate a binary value for each element of t.
 Parameters
p (float) – each element is 1 with probability p; and 0 with 1  p
t (Tensor) – the results are put into t
 Returns
t

singa.tensor.
copy_data_to_from
(dst, src, size, dst_offset=0, src_offset=0)¶ Copy the data between two Tensor instances which could be on different devices.

singa.tensor.
copy_from_numpy
(data, np_array)¶ Copy the data from the numpy array.

singa.tensor.
ctensor2numpy
(x)¶ To be used in SoftMax Operation. Convert a singa_tensor to numpy_tensor.

singa.tensor.
div
(lhs, rhs, ret=None)¶ Elementiwise division.

singa.tensor.
einsum
(ops, *args)¶ function TODO list to finish the function in cpp(just like numpy function): 1.sum(A,axis = None) 2.repeat(A,repeats) 3.transpose(A,axes = None) Do the matrix to matrix einsum calculation according to the operands Warning : this function could only support two matrix’ einsum calcultion :param ops: the string specifies the subscripts for summation such as ‘ki,kj>kij’
Here all the 26 lowercase letter can be used here.
 Parameters
arg (list of array_like) – These are the tensors for the operation,but here only support two tensors.
 Returns: Singa.Tensor
the output matirx of the einsum calculation
The best way to understand this function is to try the examples below: A_ = [0,1,2,3,4,5,6,7,8,9,10,11] A = A_.reshape(4,3) B = A_.reshape(3,4)
Here this einsum calculation is the same as normal ‘mult’ Res = einsum(‘ij,jk>ik’,A,B)
>>> [[ 20 23 26 29] [ 56 68 80 92] [ 92 113 134 155] [128 158 188 218]]
A_ = [0,1,2,3,4,5,6,7,8,9,10,11] A = A_.reshape(4,3) B = A_.reshape(4,3)
Here the einsum calculation is the same as normol ‘eltwise_mult’ Res = einsum(‘ki,ki>ki’,A,B)
>>> [[ 0 1 4] [ 9 16 25] [ 36 49 64] [ 81 100 121]]
A = [0,1,2,3,4,5,6,7,8,9,10,11] A = A.reshape(4,3)
Res = einsum(‘ki,kj>kij’,A,A) >>> [[[ 0 0 0]
[ 0 1 2] [ 0 2 4]]
 [[ 9 12 15]
[ 12 16 20] [ 15 20 25]]
 [[ 36 42 48]
[ 42 49 56] [ 48 56 64]]
 [[ 81 90 99]
[ 90 100 110] [ 99 110 121]]]
A_ = [0,1,2,3,4,5,6,7,8,9,10,11] A = A_.reshape(3,2,2)
Res = einsum(‘kia,kja>kij’,A,A) >>> [[[ 1 3]
[ 3 13]]
 [[ 41 59]
[ 59 85]]
 [[145 179]
[179 221]]]

singa.tensor.
eltwise_mult
(lhs, rhs, ret=None)¶ Elementiwise multiplication.

singa.tensor.
exp
(t)¶  Parameters
t (Tensor) – input Tensor
 Returns
a new Tensor whose element y = exp(x), x is an element of t

singa.tensor.
from_numpy
(np_array)¶ Create a Tensor instance with the shape, dtype and values from the numpy array.
 Parameters
np_array – the numpy array.
 Returns
A Tensor instance allocated on the default CppCPU device.

singa.tensor.
gaussian
(mean, std, t)¶ Generate values following a Gaussian distribution.
 Parameters
mean (float) – the mean of the Gaussian distribution.
std (float) – the standard variance of the Gaussian distribution.
t (Tensor) – the results are put into t
 Returns
t

singa.tensor.
ge
(t, x)¶ Elementiwise comparison for t >= x.

singa.tensor.
gt
(t, x)¶ Elementiwise comparison for t > x.

singa.tensor.
le
(t, x)¶ Elementiwise comparison for t <= x.

singa.tensor.
log
(t)¶  Parameters
t (Tensor) – input Tensor
 Returns
a new Tensor whose element y = log(x), x is an element of t

singa.tensor.
lt
(t, x)¶ Elementiwise comparison for t < x

singa.tensor.
mult
(A, B, C=None, alpha=1.0, beta=0.0)¶ Do matrixmatrix or matrixvector multiplication.
This function returns C = alpha * A * B + beta * C
 Parameters
 Returns
the result Tensor

singa.tensor.
pow
(t, x, out=None)¶

singa.tensor.
reshape
(t, s)¶ Reshape the input tensor with the given shape.
 Parameters
t (Tensor) – the tensor to be changed
s (list<int>) – the new shape, which should have the same volumn as the old shape.
 Returns
the new Tensor

singa.tensor.
sigmoid
(t)¶  Parameters
t (Tensor) – input Tensor
 Returns
a new Tensor whose element y = sigmoid(x); x is an element of t

singa.tensor.
sign
(t)¶  Parameters
t (Tensor) – input Tensor
 Returns
a new Tensor whose element y = sign(x)

singa.tensor.
sizeof
(dtype)¶  Returns
the number of bytes of the given SINGA data type defined in core.proto

singa.tensor.
softmax
(t, out=None)¶ Apply SoftMax for each row of the Tensor. :param t: the input 1d or 2d tensor :type t: Tensor :param out: if not None, it is used to store the result :type out: Tensor, optional
 Returns
the result Tensor

singa.tensor.
sqrt
(t)¶  Parameters
t (Tensor) – input Tensor
 Returns
a new Tensor whose element y = sqrt(x), x is an element of t

singa.tensor.
square
(t)¶  Parameters
t (Tensor) – input Tensor
 Returns
a new Tensor whose element y = x * x, x is an element of t

singa.tensor.
sub
(lhs, rhs, ret=None)¶ Elementiwise subtraction.

singa.tensor.
sum
(t, axis=None)¶ Sum elements of the input tensor long the given axis.
 Parameters
t (Tensor) – input Tensor
axis (int, optional) – if None, the summation is done over all elements; if axis is provided, then it is calculated along the given axis, e.g. 0 – sum each column; 1 – sum each row.
 Returns
a float value as the sum of all elements, or a new Tensor

singa.tensor.
sum_columns
(M)¶ Sum all columns into a single column.
 Parameters
M (Tensor) – the input 2d tensor.
 Returns
a new Tensor as the resulted column.

singa.tensor.
sum_rows
(M)¶ Sum all rows into a single row.
 Parameters
M (Tensor) – the input 2d tensor.
 Returns
a new Tensor as the resulted row.

singa.tensor.
tanh
(t)¶  Parameters
t (Tensor) – input Tensor
 Returns
a new Tensor whose element y = tanh(x), x is an element of t

singa.tensor.
to_host
(t)¶ Copy the data to a host tensor.