ONNX
ONNX is an open format built to represent machine learning models, which enables an ability to transfer trained models between different deep learning frameworks. We have integrated the main functionality of ONNX into SINGA, and several basic operators have been supported. More operators are being developing.
The supported [ONNX version}(https://github.com/onnx/onnx/blob/master/docs/Versioning.md) os SINGA is:
ONNX version | File format version | Opset version ai.onnx | Opset version ai.onnx.ml | Opset version ai.onnx.training |
---|---|---|---|---|
1.6.0 | 6 | 11 | 2 | - |
General usage
The onnx in SINGA has supported the basic functionality, and please refer the following tutorials for general usage:
Loading an ONNX Model into SINGA
This part introduces how to import and prepare a SINGA model from a ONNX model.
After you load a ONNX model by onnx.load
, you need to update the model's
batchsize, since for most model, they uses a placeholder to represent its
batchsize. We give an example here, as update_batch_size
. You only needs to
update the batchsize of input and output, the shape of inner tensor will be
inferred automatically.
Then, you can prepare the SINGA model by using sonnx.prepare
. This function
iteraters and translates all the nodes within the ONNX model's graph to SINGA
operators, loads all stored weights and infers each intermediate tensor's shape.
For the device used, please refer to the device
section.
import onnx
from singa import device
from singa import sonnx
def update_batch_size(onnx_model, batch_size):
model_input = onnx_model.graph.input[0]
model_input.type.tensor_type.shape.dim[0].dim_value = batch_size
model_output = onnx_model.graph.output[0]
model_output.type.tensor_type.shape.dim[0].dim_value = batch_size
return onnx_model
model_path = "PATH/To/ONNX/MODEL"
onnx_model = onnx.load(model_path)
# set batch size
onnx_model = update_batch_size(onnx_model, 1)
# prepare the model
dev = device.create_cuda_gpu()
sg_ir = sonnx.prepare(onnx_model, device=dev)
Inferernce SINGA model
After you load and prepare a SINGA model, you can do the inference by calling
sg_ir.run
as the following code. The input and output must be SINGA Tensor
,
and since SINGA model returns the output as a list, so if you only have one
output, you just take the first element from the output as forward
of Infer
class.
class Infer:
def __init__(self, sg_ir):
self.sg_ir = sg_ir
def forward(self, x):
return sg_ir.run([x])[0]
data = get_dataset()
x = tensor.Tensor(device=dev, data=data)
model = Infer(sg_ir)
y = model.forward(x)
Saving an ONNX Model from SINGA
Now, if you have a SINGA model, you can export it as ONNX model as following:
sonnx.to_onnx([x], [y])
Re-training a ONNX model
You also can re-training a ONNX model after you load it into SINGA as following
code. Please node you should set all tensors of the SINGA model to enable them
to store gradient by tens.requires_grad = True
and tens.stores_grad = True
.
class Infer:
def __init__(self, sg_ir):
self.sg_ir = sg_ir
for idx, tens in sg_ir.tensor_map.items():
# allow the tensors to be updated
tens.requires_grad = True
tens.stores_grad = True
def forward(self, x):
return sg_ir.run([x])[0]
autograd.training = False
model = Infer(sg_ir)
# then you training the model like normal
Transfer-learning a ONNX model
You also can append some layers to the end of ONNX model to do transfer-learning
like following. The last_layers
means you cut the ONNX layers from [0,
last_layers]. Then you can append more layers by the normal SINGA model.
class Trans:
def __init__(self, sg_ir, last_layers):
self.sg_ir = sg_ir
self.last_layers = last_layers
self.append_linear1 = autograd.Linear(500, 128, bias=False)
self.append_linear2 = autograd.Linear(128, 32, bias=False)
self.append_linear3 = autograd.Linear(32, 10, bias=False)
def forward(self, x):
y = sg_ir.run([x], last_layers=self.last_layers)[0]
y = self.append_linear1(y)
y = autograd.relu(y)
y = self.append_linear2(y)
y = autograd.relu(y)
y = self.append_linear3(y)
y = autograd.relu(y)
return y
autograd.training = False
model = Trans(sg_ir, -1)
# then you training the model like normal
Example: ONNX mnist on SINGA
This part introduces the usage of SINGA ONNX by using the mnist example. In this section, the examples of how to export, load, inference, re-training, and transfer-learning the minist model are displayed. You can try this part here.
Load dataset
Firstly, you need to import some necessary libraries and define some auxiliary functions for downloading and preprocessing the dataset:
import os
import urllib.request
import gzip
import numpy as np
import codecs
from singa import device
from singa import tensor
from singa import opt
from singa import autograd
from singa import sonnx
import onnx
def load_dataset():
train_x_url = 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz'
train_y_url = 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz'
valid_x_url = 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz'
valid_y_url = 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
train_x = read_image_file(check_exist_or_download(train_x_url)).astype(
np.float32)
train_y = read_label_file(check_exist_or_download(train_y_url)).astype(
np.float32)
valid_x = read_image_file(check_exist_or_download(valid_x_url)).astype(
np.float32)
valid_y = read_label_file(check_exist_or_download(valid_y_url)).astype(
np.float32)
return train_x, train_y, valid_x, valid_y
def check_exist_or_download(url):
download_dir = '/tmp/'
name = url.rsplit('/', 1)[-1]
filename = os.path.join(download_dir, name)
if not os.path.isfile(filename):
print("Downloading %s" % url)
urllib.request.urlretrieve(url, filename)
return filename
def read_label_file(path):
with gzip.open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2049
length = get_int(data[4:8])
parsed = np.frombuffer(data, dtype=np.uint8, offset=8).reshape(
(length))
return parsed
def get_int(b):
return int(codecs.encode(b, 'hex'), 16)
def read_image_file(path):
with gzip.open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2051
length = get_int(data[4:8])
num_rows = get_int(data[8:12])
num_cols = get_int(data[12:16])
parsed = np.frombuffer(data, dtype=np.uint8, offset=16).reshape(
(length, 1, num_rows, num_cols))
return parsed
def to_categorical(y, num_classes):
y = np.array(y, dtype="int")
n = y.shape[0]
categorical = np.zeros((n, num_classes))
categorical[np.arange(n), y] = 1
categorical = categorical.astype(np.float32)
return categorical
MNIST model
Then you can define a class called CNN to construct the mnist model which consists of several convolution, pooling, fully connection and relu layers. You can also define a function to calculate the accuracy of our result. Finally, you can define a train and a test function to handle the training and prediction process.
class CNN:
def __init__(self):
self.conv1 = autograd.Conv2d(1, 20, 5, padding=0)
self.conv2 = autograd.Conv2d(20, 50, 5, padding=0)
self.linear1 = autograd.Linear(4 * 4 * 50, 500, bias=False)
self.linear2 = autograd.Linear(500, 10, bias=False)
self.pooling1 = autograd.MaxPool2d(2, 2, padding=0)
self.pooling2 = autograd.MaxPool2d(2, 2, padding=0)
def forward(self, x):
y = self.conv1(x)
y = autograd.relu(y)
y = self.pooling1(y)
y = self.conv2(y)
y = autograd.relu(y)
y = self.pooling2(y)
y = autograd.flatten(y)
y = self.linear1(y)
y = autograd.relu(y)
y = self.linear2(y)
return y
def accuracy(pred, target):
y = np.argmax(pred, axis=1)
t = np.argmax(target, axis=1)
a = y == t
return np.array(a, "int").sum() / float(len(t))
def train(model,
x,
y,
epochs=1,
batch_size=64,
dev=device.get_default_device()):
batch_number = x.shape[0] // batch_size
for i in range(epochs):
for b in range(batch_number):
l_idx = b * batch_size
r_idx = (b + 1) * batch_size
x_batch = tensor.Tensor(device=dev, data=x[l_idx:r_idx])
target_batch = tensor.Tensor(device=dev, data=y[l_idx:r_idx])
output_batch = model.forward(x_batch)
# onnx_model = sonnx.to_onnx([x_batch], [y])
# print('The model is:\n{}'.format(onnx_model))
loss = autograd.softmax_cross_entropy(output_batch, target_batch)
accuracy_rate = accuracy(tensor.to_numpy(output_batch),
tensor.to_numpy(target_batch))
sgd = opt.SGD(lr=0.001)
for p, gp in autograd.backward(loss):
sgd.update(p, gp)
sgd.step()
if b % 1e2 == 0:
print("acc %6.2f loss, %6.2f" %
(accuracy_rate, tensor.to_numpy(loss)[0]))
print("training completed")
return x_batch, output_batch
def test(model, x, y, batch_size=64, dev=device.get_default_device()):
batch_number = x.shape[0] // batch_size
result = 0
for b in range(batch_number):
l_idx = b * batch_size
r_idx = (b + 1) * batch_size
x_batch = tensor.Tensor(device=dev, data=x[l_idx:r_idx])
target_batch = tensor.Tensor(device=dev, data=y[l_idx:r_idx])
output_batch = model.forward(x_batch)
result += accuracy(tensor.to_numpy(output_batch),
tensor.to_numpy(target_batch))
print("testing acc %6.2f" % (result / batch_number))
Train mnist model and export it to onnx
Now, you can train the mnist model and export its onnx model by calling the soonx.to_onnx function.
def make_onnx(x, y):
return sonnx.to_onnx([x], [y])
# create device
dev = device.create_cuda_gpu()
#dev = device.get_default_device()
# create model
model = CNN()
# load data
train_x, train_y, valid_x, valid_y = load_dataset()
# normalization
train_x = train_x / 255
valid_x = valid_x / 255
train_y = to_categorical(train_y, 10)
valid_y = to_categorical(valid_y, 10)
# do training
autograd.training = True
x, y = train(model, train_x, train_y, dev=dev)
onnx_model = make_onnx(x, y)
# print('The model is:\n{}'.format(onnx_model))
# Save the ONNX model
model_path = os.path.join('/', 'tmp', 'mnist.onnx')
onnx.save(onnx_model, model_path)
print('The model is saved.')
Inference
After you export the onnx model, you can find a file called mnist.onnx in the '/tmp' directory, this model, therefore, can be imported by other libraries. Now, if you want to import this onnx model into singa again and do the inference using the validation dataset, you can define a class called Infer, the forward function of Infer will be called by the test function to do inference for validation dataset. By the way, you should set the label of training to False to fix the gradient of autograd operators.
When import the onnx model, you need to call onnx.load to load the onnx model firstly. Then the onnx model will be fed into the soonx.prepare to parse and initiate to a singa model(sg_ir in the code). The sg_ir contains a singa graph within it, and then you can run an step of inference by feeding input to its run function.
class Infer:
def __init__(self, sg_ir):
self.sg_ir = sg_ir
for idx, tens in sg_ir.tensor_map.items():
# allow the tensors to be updated
tens.requires_grad = True
tens.stores_grad= True
sg_ir.tensor_map[idx] = tens
def forward(self, x):
return sg_ir.run([x])[0] # we can run one step of inference by feeding input
# load the ONNX model
onnx_model = onnx.load(model_path)
sg_ir = sonnx.prepare(onnx_model, device=dev) # parse and initiate to a singa model
# inference
autograd.training = False
print('The inference result is:')
test(Infer(sg_ir), valid_x, valid_y, dev=dev)
Re-training
Assume after import the model, you want to re-train the model again, we can define a function called re_train. Before we call this re_train function, we should set the label of training to True to make the autograde operators update their gradient. And after we finish the training, we set it as False again to call the test function doing inference.
def re_train(sg_ir,
x,
y,
epochs=1,
batch_size=64,
dev=device.get_default_device()):
batch_number = x.shape[0] // batch_size
new_model = Infer(sg_ir)
for i in range(epochs):
for b in range(batch_number):
l_idx = b * batch_size
r_idx = (b + 1) * batch_size
x_batch = tensor.Tensor(device=dev, data=x[l_idx:r_idx])
target_batch = tensor.Tensor(device=dev, data=y[l_idx:r_idx])
output_batch = new_model.forward(x_batch)
loss = autograd.softmax_cross_entropy(output_batch, target_batch)
accuracy_rate = accuracy(tensor.to_numpy(output_batch),
tensor.to_numpy(target_batch))
sgd = opt.SGD(lr=0.01)
for p, gp in autograd.backward(loss):
sgd.update(p, gp)
sgd.step()
if b % 1e2 == 0:
print("acc %6.2f loss, %6.2f" %
(accuracy_rate, tensor.to_numpy(loss)[0]))
print("re-training completed")
return new_model
# load the ONNX model
onnx_model = onnx.load(model_path)
sg_ir = sonnx.prepare(onnx_model, device=dev)
# re-training
autograd.training = True
new_model = re_train(sg_ir, train_x, train_y, dev=dev)
autograd.training = False
test(new_model, valid_x, valid_y, dev=dev)
Transfer learning
Finally, if we want to do transfer-learning, we can define a function called Trans to append some layers after the onnx model. For demonstration, the code only appends several linear(fully connection) and relu after the onnx model. You can define a transfer_learning function to handle the training process of the transfer-learning model. And the label of training is the same as the previous one.
class Trans:
def __init__(self, sg_ir, last_layers):
self.sg_ir = sg_ir
self.last_layers = last_layers
self.append_linear1 = autograd.Linear(500, 128, bias=False)
self.append_linear2 = autograd.Linear(128, 32, bias=False)
self.append_linear3 = autograd.Linear(32, 10, bias=False)
def forward(self, x):
y = sg_ir.run([x], last_layers=self.last_layers)[0]
y = self.append_linear1(y)
y = autograd.relu(y)
y = self.append_linear2(y)
y = autograd.relu(y)
y = self.append_linear3(y)
y = autograd.relu(y)
return y
def transfer_learning(sg_ir,
x,
y,
epochs=1,
batch_size=64,
dev=device.get_default_device()):
batch_number = x.shape[0] // batch_size
trans_model = Trans(sg_ir, -1)
for i in range(epochs):
for b in range(batch_number):
l_idx = b * batch_size
r_idx = (b + 1) * batch_size
x_batch = tensor.Tensor(device=dev, data=x[l_idx:r_idx])
target_batch = tensor.Tensor(device=dev, data=y[l_idx:r_idx])
output_batch = trans_model.forward(x_batch)
loss = autograd.softmax_cross_entropy(output_batch, target_batch)
accuracy_rate = accuracy(tensor.to_numpy(output_batch),
tensor.to_numpy(target_batch))
sgd = opt.SGD(lr=0.07)
for p, gp in autograd.backward(loss):
sgd.update(p, gp)
sgd.step()
if b % 1e2 == 0:
print("acc %6.2f loss, %6.2f" %
(accuracy_rate, tensor.to_numpy(loss)[0]))
print("transfer-learning completed")
return trans_mode
# load the ONNX model
onnx_model = onnx.load(model_path)
sg_ir = sonnx.prepare(onnx_model, device=dev)
# transfer-learning
autograd.training = True
new_model = transfer_learning(sg_ir, train_x, train_y, dev=dev)
autograd.training = False
test(new_model, valid_x, valid_y, dev=dev)
ONNX model zoo
The ONNX Model Zoo is a collection of pre-trained, state-of-the-art models in the ONNX format contributed by community members. SINGA has supported several CV and NLP models now. More models are going to be supported soon.
Image Classification
This collection of models take images as input, then classifies the major objects in the images into 1000 object categories such as keyboard, mouse, pencil, and many animals.
Model Class | Reference | Description | Link |
---|---|---|---|
MobileNet | Sandler et al. | Light-weight deep neural network best suited for mobile and embedded vision applications. Top-5 error from paper - ~10% | |
ResNet18 | He et al. | A CNN model (up to 152 layers). Uses shortcut connections to achieve higher accuracy when classifying images. Top-5 error from paper - ~3.6% | |
VGG16 | Simonyan et al. | Deep CNN model(up to 19 layers). Similar to AlexNet but uses multiple smaller kernel-sized filters that provides more accuracy when classifying images. Top-5 error from paper - ~8% |
Object Detection
Object detection models detect the presence of multiple objects in an image and segment out areas of the image where the objects are detected.
Model Class | Reference | Description | Link |
---|---|---|---|
Tiny YOLOv2 | Redmon et al. | A real-time CNN for object detection that detects 20 different classes. A smaller version of the more complex full YOLOv2 network. |
Face Analysis
Face detection models identify and/or recognize human faces and emotions in given images.
Model Class | Reference | Description | Link |
---|---|---|---|
ArcFace | Deng et al. | A CNN based model for face recognition which learns discriminative features of faces and produces embeddings for input face images. | |
Emotion FerPlus | Barsoum et al. | Deep CNN for emotion recognition trained on images of faces. |
Machine Comprehension
This subset of natural language processing models that answer questions about a given context paragraph.
Model Class | Reference | Description | Link |
---|---|---|---|
BERT-Squad | Devlin et al. | This model answers questions based on the context of the given input paragraph. |
Supported operators
The following operators are supported:
- Conv
- Relu
- Constant
- MaxPool
- AveragePool
- Softmax
- Sigmoid
- Add
- MatMul
- BatchNormalization
- Concat
- Flatten
- Add
- Gemm
- Reshape
- Sum
- Cos
- Cosh
- Sin
- Sinh
- Tan
- Tanh
- Acos
- Acosh
- Asin
- Asinh
- Atan
- Atanh
- Selu
- Elu
- Equal
- Less
- Sign
- Div
- Sub
- Sqrt
- Log
- Greater
- HardSigmoid
- Identity
- Softplus
- Softsign
- Mean
- Pow
- Clip
- PRelu
- Mul
- Transpose
- Max
- Min
- Shape
- And
- Or
- Xor
- Not
- Neg
- Reciprocal
- LeakyRelu
- GlobalAveragePool
- ConstantOfShape
- Dropout
- ReduceSum
- ReduceMean
- LeakyRelu
- GlobalAveragePool
- Squeeze
- Unsqueeze
- Slice
- Ceil
- Split
- Gather
- Tile
- NonZero
- Cast
- OneHot
Special comments for ONNX backend
Conv, MaxPool and AveragePool
Input must be 1d
(N*C*H)
and 2d(N*C*H*W
) shape anddilation
must be 1.BatchNormalization
epsilon
is 1e-05 and cannot be changed.Cast
Only support float32 and int32, other types are casted to these two types.
Squeeze and Unsqueeze
If you encounter errors when you
Squeeze
orUnsqueeze
betweenTensor
and Scalar, please report to us.Empty tensor Empty tensor is illegal in SINGA.
Implementation
The code of SINGA ONNX locates at python/singa/soonx.py
. There are three main
class, SingaFrontend
and SingaBackend
and SingaRep
. SingaFrontend
translates a SINGA model to ONNX model; SingaBackend
translates a ONNX model
to SingaRep
object which stores all SINGA operators and tensors(the tensor in
this doc means SINGA Tensor
); SingaRep
can be run like a SINGA model.
SingaFrontend
The entry function of SingaFrontend
is singa_to_onnx_model
which also is
called to_onnx
. singa_to_onnx_model
creates the ONNX model, and it also
create a ONNX graph by using singa_to_onnx_graph
.
singa_to_onnx_graph
accepts the output of the model, and recursively iterate
the SINGA model's graph from the output to get all operators to form a queue.
The input and intermediate tensors, i.e, trainable weights, of the SINGA model
is picked up at the same time. The input is stored in onnx_model.graph.input
;
the output is stored in onnx_model.graph.output
; and the trainable weights are
stored in onnx_model.graph.initializer
.
Then the SINGA operator in the queue is translated to ONNX operators one by one.
_rename_operators
defines the operators name mapping between SINGA and ONNX.
_special_operators
defines which function to be used to translate the
operator.
In addition, some operators in SINGA has different definition with ONNX, that
is, ONNX regards some attributes of SINGA operators as input, so
_unhandled_operators
defines which function to handle the special operator.
Since the bool type is regarded as int32 in SINGA, _bool_operators
defines the
operators to be changed as bool type.
SingaBackend
The entry function of SingaBackend
is prepare
which checks the version of
ONNX model and call _onnx_model_to_singa_net
then.
The purpose of _onnx_model_to_singa_net
is to get SINGA tensors and operators.
The tensors are stored in a dictionary by their name in ONNX, and operators are
stored in queue by the form of
namedtuple('SingaOps', ['name', 'op', 'handle', 'forward'])
. For each
operator, name
is its ONNX node name; op
is the ONNX node; forward
is the
SINGA operator's forward function; handle
is prepared for some special
operators such as Conv and Pooling which has handle
object.
The first step of _onnx_model_to_singa_net
is to call _init_graph_parameter
to get all tensors within the model. For trainable weights, it can init SINGA
Tensor
from onnx_model.graph.initializer
. Please note, the weights may also
be stored within graph's input or a ONNX node called Constant
, SINGA can also
handle these.
Though all weights are stored within ONNX model, the input of the model is unknown but its shape and type. So SINGA support two ways to init input, 1, generate random tensor by its shape and type, 2, allow the user to assign the input. The first way works fine for most models, however, for some model such as bert, the indices of matrix cannot be random generated otherwise it will incurs errors.
Then, _onnx_model_to_singa_net
iterators all nodes within ONNX graph to
translate it to SIGNA operators. Also, _rename_operators
defines the operators
name mapping between SINGA and ONNX. _special_operators
defines which function
to be used to translate the operator. _run_node
runs the generated SINGA model
by its input tensors and store its output tensors for being used by later
operators.
This class finally return a SingaRep
object and stores all SINGA tensors and
operators within it.
SingaRep
SingaBackend
stores all SINGA tensors and operators. run
accepts the input
of the model and run the SINGA operators one by one following the operators
queue. The user can use last_layers
to decide to run the model till the last
few layers. Set all_outputs
as False
to get only the final output, True
to
also get all the intermediate output.